18 research outputs found

    A GIS-based multi-criteria evaluation framework for uncertainty reduction in earthquake disaster management using granular computing

    Get PDF
    One of the most important steps in earthquake disaster management is the prediction of probable damages which is called earthquake vulnerability assessment. Earthquake vulnerability assessment is a multicriteria problem and a number of multi-criteria decision making models have been proposed for the problem. Two main sources of uncertainty including uncertainty associated with experts‘ point of views and the one associated with attribute values exist in the earthquake vulnerability assessment problem. If the uncertainty in these two sources is not handled properly the resulted seismic vulnerability map will be unreliable. The main objective of this research is to propose a reliable model for earthquake vulnerability assessment which is able to manage the uncertainty associated with the experts‘ opinions. Granular Computing (GrC) is able to extract a set of if-then rules with minimum incompatibility from an information table. An integration of Dempster-Shafer Theory (DST) and GrC is applied in the current research to minimize the entropy in experts‘ opinions. The accuracy of the model based on the integration of the DST and GrC is 83%, while the accuracy of the single-expert model is 62% which indicates the importance of uncertainty management in seismic vulnerability assessment problem. Due to limited accessibility to current data, only six criteria are used in this model. However, the model is able to take into account both qualitative and quantitative criteria

    Discovery of Transition Rules for Cellular Automata Using Artificial Bee Colony and Particle Swarm Optimization Algorithms in Urban Growth Modeling

    No full text
    This paper presents an advanced method in urban growth modeling to discover transition rules of cellular automata (CA) using the artificial bee colony (ABC) optimization algorithm. Also, comparisons between the simulation results of CA models optimized by the ABC algorithm and the particle swarm optimization algorithms (PSO) as intelligent approaches were performed to evaluate the potential of the proposed methods. According to previous studies, swarm intelligence algorithms for solving optimization problems such as discovering transition rules of CA in land use change/urban growth modeling can produce reasonable results. Modeling of urban growth as a dynamic process is not straightforward because of the existence of nonlinearity and heterogeneity among effective involved variables which can cause a number of challenges for traditional CA. ABC algorithm, the new powerful swarm based optimization algorithms, can be used to capture optimized transition rules of CA. This paper has proposed a methodology based on remote sensing data for modeling urban growth with CA calibrated by the ABC algorithm. The performance of ABC-CA, PSO-CA, and CA-logistic models in land use change detection is tested for the city of Urmia, Iran, between 2004 and 2014. Validations of the models based on statistical measures such as overall accuracy, figure of merit, and total operating characteristic were made. We showed that the overall accuracy of the ABC-CA model was 89%, which was 1.5% and 6.2% higher than those of the PSO-CA and CA-logistic model, respectively. Moreover, the allocation disagreement (simulation error) of the simulation results for the ABC-CA, PSO-CA, and CA-logistic models are 11%, 12.5%, and 17.2%, respectively. Finally, for all evaluation indices including running time, convergence capability, flexibility, statistical measurements, and the produced spatial patterns, the ABC-CA model performance showed relative improvement and therefore its superiority was confirmed

    A Wandering Detection Method Based on Processing GPS Trajectories Using the Wavelet Packet Decomposition Transform for People with Cognitive Impairment

    No full text
    The increasing prevalence of cognitive disorders among the elderly is a significant consequence of the global aging phenomenon. Wandering stands out as the most prominent and challenging symptom in these patients, with potential irreversible consequences such as loss or even death. Thus, harnessing technological advancements to mitigate caregiving burdens and disease-related repercussions becomes paramount. Numerous studies have developed algorithms and smart healthcare and telemedicine systems for wandering detection. Broadly, these algorithms fall into two categories: those estimating path complexity and those relying on historical trajectory data. However, motion signal processing methods are rarely employed in this context. This paper proposes a motion-signal-processing-based algorithm utilizing the wavelet packet transform (WPT) with a fourth-order Coiflet mother wavelet. The algorithm identifies wandering patterns solely based on patients’ positional data on the current traversed path and variations in wavelet coefficients within the frequency–time spectrum of motion signals. The model’s independence from prior motion behavior data enhances its compatibility with the pronounced instability often seen in these patients. A performance assessment of the proposed algorithm using the Geolife open-source dataset achieved accuracy, precision, specificity, recall, and F-score metrics of 83.06%, 92.62%, 83.06%, 83.06%, and 87.58%, respectively. Timely wandering detection not only prevents irreversible consequences but also serves as a potential indicator of progression to severe Alzheimer’s in patients with mild cognitive impairment, enabling timely interventions for preventing disease progression. This underscores the importance of advancing wandering detection algorithms

    Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm

    No full text
    Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits

    A modified spatial entropy for urban sprawl assessment

    No full text
    Urban sprawl is recognized as a challenge in urbanization. It is an unplanned spread of cities into its surrounding area that is caused by rising urban population. This phenomenon, if not properly controlled, can lead to several issues, e.g. traffic congestion, water and air pollution and excessive fuel consumption. A recent extension of the Shannon entropy such as the spatial entropy can be used to model urban sprawl. We introduce a new measure of spatial entropy from a previous measure of spatial entropy. The proposed spatial entropy adds the compositional information of land use maps to the spatial entropy. In order to consider affecting factors in urban sprawl calculations, a conditional spatial entropy is suggested. The urban growth process is affected by various environmental and socio-economic parameters. Some of these parameters have such a low significance in urban growth process, and then feature selection have some advantageous like to reduce overall training times, to deal with overfitting and to increase generalizability. Fuzzy rough set theory is utilized as a feature selection method. The results show that the proposed model provides some valuable evaluation of the urban sprawl as compared to previous methods. Moreover, the feature selection has a minute impact on the entropy values, especially in the new modified entropy, this implying to remove unimportant features from the features

    [Dessin d'une cheminée] / Jean Jque Fois Lequeu delin 1749

    Get PDF
    Environmental pollution has mainly been attributed to urbanization and industrial developments across the globe. Air pollution has been marked as one of the major problems of metropolitan areas around the world, especially in Tehran, the capital of Iran, where its administrators and residents have long been struggling with air pollution damage such as the health issues of its citizens. As far as the study area of this research is concerned, a considerable proportion of Tehran air pollution is attributed to PM10 and PM2.5 pollutants. Therefore, the present study was conducted to determine the prediction models to determine air pollutions based on PM10 and PM2.5 pollution concentrations in Tehran. To predict the air-pollution, the data related to day of week, month of year, topography, meteorology, and pollutant rate of two nearest neighbors as the input parameters and machine learning methods were used. These methods include a regression support vector machine, geographically weighted regression, artificial neural network and auto-regressive nonlinear neural network with an external input as the machine learning method for the air pollution prediction. A prediction model was then proposed to improve the afore-mentioned methods, by which the error percentage has been reduced and improved by 57%, 47%, 47% and 94%, respectively. The most reliable algorithm for the prediction of air pollution was autoregressive nonlinear neural network with external input using the proposed prediction model, where its one-day prediction error reached 1.79 µg/m3. Finally, using genetic algorithm, data for day of week, month of year, topography, wind direction, maximum temperature and pollutant rate of the two nearest neighbors were identified as the most effective parameters in the prediction of air pollution
    corecore